

BBD-003-0491104

Seat No.

B. Sc. / M. Sc. (Applied Physics) (Sem. X) (CBCS) Examination

July - 2021

Paper-16: Nanostructuring With Ion Beams

(Elective-4)

(New Course)

Faculty Code: 003

Subject Code: 0491104

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: Write any five questions.

- 1 Write answer of following short questions: (Two marks each) 14
 - (1) Define a unit cell.
 - (2) What are projected range and straggling of energetic ions in a target?
 - (3) What is sputter erosion of materials by energetic ions?
 - (4) What is Ehrlich-Schwoebel barrier?
 - (5) Define parallel and perpendicular-mode ripple patterns.
 - (6) What happens to pattern formation when impurities are also incorporated onto the target surface during ion induced pattern fabrication?
 - (7) What happens to pattern formation when concurrent azimuthal rotation (beside tilt) is also provided onto the target surface during ion induced pattern fabrication?
- 2 Write answer of following short questions: (Two marks each) 14
 - (1) How can the cold cathode electron emission performance be improved from nanofaceted Si surfaces?
 - (2) What is plasmonics? Give two examples where it can be applied efficiently.
 - (3) List the name of different regimes of ion induced pattern formation?

- (4) What is meant by stopping cross-section?
- (5) List various types of defects formed during ion interaction with solids?
- (6) What is surface diffusion?
- (7) List various applications of nanostructuring with ion beams.
- 3 Write answers of following questions.

14

- (1) Explain various crystal systems with necessary diagram in detail.
- (2) State how many Bravais lattices are known to exist and explain in detail how the translational symmetry of the Bravais lattice are classified.
- 4 Write answers of following questions.

14

- (1) Draw schematic diagrams of Triclinic and Rhombohedral systems and show different angles as well as axes with their relationships. Give one each example of these two crystallographic systems.
- (2) State the difference(s) between a direct and an indirect band-gap semiconductor along with schematic diagrams and two examples each.
- **5** Write answers of following questions.

14

- (1) Describe the advantages of ion-beam induced nanopatterning of materials and name all the parameters which can influence the pattern formation.
- (2) Give a detail description (through a parametric phase diagram) of pattern formation on Si by energetic (≤ 2 keV) inert gas ions (e.g. Ar-ions) by varying incident angle of ions.
- **6** Write answers of following questions.

14

- (1) What are the main competing processes during pattern formation? Explain it in terms of schematic diagrams.
- (2) What is a morphologically anisotropic surface? Describe three examples where morphological anisotropy leads to anisotropic physical properties.

- 7 Write answers of following questions.
 - (1) Draw a schematic diagram, showing all the processes involved in ion-beam induced fabrication of embedded nanoparticles in a thick substrate. You can start from t=0 and show the processes as a function of increasing time.
 - (2) Describe two methods and provide examples (one each) to fabricate highly ordered regular patterns (by energetic ion beams) on semiconductor surfaces.
- 8 Write answers of following questions.

14

14

- (1) Explain laser annealing with schematic diagram and its applications.
- (2) Show a schematic diagram of cold cathode electron emission process and describe in detail how cold cathode electron emission takes place from a ion patterned nanofaceted Si surface.
- **9** Write answers of following questions.

14

- (1) Discuss the optical anisotropy in self aligned nanoparticles.
- (2) Describe the applications of patterned oxide films in resistive switching.
- 10 Write answers of following questions.

14

- (1) Discuss Bradley-Harper (B-H) instability regime in pattern formation and surface evolution.
- (2) Explain the phenomena of displacement cascades and generation of defects.